
Cheat Sheet: Regular Expressions
Adapted from http://www.javacodegeeks.com/2012/11/java-regular-expression-tutorial-with-examples.html.

Matching symbols
Regex Matches
. any one character
^abc “abc” at the beginning of a line
abc$ “abc” at the end of a line
[abc] “a”, “b”, or “c”
[abc][12] “a”, “b”, or “c” followed by “1” or “2”
[^abc] anything EXCEPT “a”, “b”, or “c”
[a-c1-5] “a”, “b”, “c”, “1”, “2”, “3”, “4” or “5”
ab|cd “ab” or “cd”

Metacharacters
Regex Matches
\d any digits (same as [0-9])
\D any non-digit (same as [^0-9])
\s any whitespace character (spaces, tabs, newlines, etc.)
\S any non-whitespace character
\w any word character (same as [a-zA-Z_0-9])
\W any non-word character
\b a word boundary
\B anything not a word boundary

Quantifiers
Regex Matches
X? X occurring once or not at all
X* X occurring zero or more times
X+ X occurring one or more times
X{n} X occurring exactly n times
X{n,} X occurring n or more times
X{n,m} X occurring at least n times but not more than m times

Escape characters used as symbols or quantifiers with “\”, e.g., /\./ matches a period, not any one
character.
Use parentheses to enclose characters parsed as strings, e.g., /(abc)/ matches “abc” but not “ab.”

Cheat Sheet: Google Refine Expression Language (GREL)
A more complete reference is available at https://github.com/OpenRefine/OpenRefine/wiki/Google-refine-expression-language.
For a complete list of GREL functions, see https://github.com/OpenRefine/OpenRefine/wiki/GREL-Functions.

Function What it does What it returns Parameters Example
value.match(/regex/)
value.match(/regex/)[index]

value.match(“string”)
value.match(“string”)[index]

Attempts to match the
regular expression regex
or string string with
value. Use /.*regex.*/ to
match a partial string.

An array (even
if only one
match is found).
If [index] is
present, returns
the
corresponding
string within
the array.

regex =
regular
expression to
match against
index = index
of a string
within the
array

value = “The cat can’t lay on
the cot”
value.match(/c.t/)  [“cat”,
“cot”]
value.match(/c.t/)[0]  “cat”

value.contains(/regex/)

value.contains(“string”)

Determines whether value
contains the regular
expression regex or the
string string.

A Boolean (true
or false).

regex =
regular
expression to
search

value = “coffee and tea and
chai and mate”
value.contains(“and”)  TRUE

value.replace(t, u)

If t is a regular expression, use
/(t)/

Returns value with all
occurrences of the string
or regular expression t
replaced with the string
u.

A string. t = string or
regex to
replace
u = string or
regex that
replaces t

value = “coffee and tea and
chai and mate”
value.replace(“ and ”, “, ”)
 “coffee, tea, chai, mate”

value.trim() Removes any leading or
trailing white space
value.

A string. n/a value = “ coffee ”
value.trim()  “coffee”

value.length() String: Returns the length
of value.
Array: Returns the number
of terms in the array
value.

A number. n/a value = “coffee”
value.length()  6

value = [“coffee”, “tea”]
value.length()  2

value.split(delim)
value.split(delim)[index]

Splits string value into
an array, breaking at each
instance of the string
delimiter delim.

An array. If
[index] is
present, returns
the
corresponding
string within
the array.

delim =
delimiter
between array
elements
index = index
of a string
within the
array

value = “coffee, tea, chai,
mate”
value.split(“, ”) 
[“coffee”, “tea”, “chai”,
“mate”]
value.split(“, ”)[-1] 
“mate”

value.join(separator) Joins the elements in the
array value into a string
with connector separator.

A string. separator =
the link used
to join array
elements into
a string

value = [“coffee”, “tea”,
“chai”, “mate”]
value.join(“ AND ”)  “coffee
AND tea AND chai AND mate”

value.slice(x, y) String: Gives each
character in value an
index as in an array, and
returns the part of this
array with index x up to
but not including index y.
Array: Returns the
elements of an array from
index x up to but not
including index y.

String: a
string.
Array: an array.

x = index at
which to start
slice
y = index
before which
to stop slice

value = “coffee”
value.slice(1, 4)  “off”

value = [“coffee”, “tea”,
chai”, “mate”]
value.slice(0, 2) 
[“coffee”, “tea”, “chai”]

value.partition(fragment)
value.partition(fragment)[index]

value.partition(fragment, true) =
omits fragment from returned array

Returns an array
consisting of the part of
value before the first
occurrence of fragment,
fragment, and the part of
value after the first
occurrence of fragment.

An array with
three terms. If
[index] is
present, returns
the
corresponding
string within
the array.

fragment = the
substring or
regular
expression
around which
value is
partitioned
index = index
of a string
within the
array

value = “coffee and tea and
chai”
value.partition(“ and ”) 
[“coffee”, “ and ”, “tea and
chai”]
value.partition(“ and ”)[1] 
“ and ”

value.rpartition(fragment)
value.rpartition(fragment)[index]

value.rpartition(fragment, true) =
omits fragment from returned array

Returns an array
consisting of the part of
value before the last
occurrence of fragment,
fragment, and the part of
value after the last
occurrence of fragment.

An array with
three terms. If
[index] is
present, returns
the
corresponding
string within
the array.

fragment = the
substring or
regular
expression
around which
value is
partitioned
index = index
of a string
within the
array

value = “coffee and tea and
chai”
value.rpartition(“ and ”) 
[“coffee and tea”, “ and ”,
“chai”]
value.rpartition(“ and ”)[0]
 “coffee and tea”

value.reverse() Reverses the order of the
elements in the array
value.

An array. n/a value = [“coffee”, “tea”,
“chai”, “mate”]
value.reverse()  [“mate”,
“chai”, “tea”, “coffee”]

not(booleanexp) Returns “TRUE” if the
value of booleanexp is
false

A Boolean (true
or false).

booleanexp = a
function or
expression
that returns
TRUE or FALSE

value = “coffee”
not(value.contains(“a”)) 
TRUE

